Building COVID-19 Dashboard in Golang with Google BigQuery

It has been almost half a year since the first case relating to the COVID-19 pandemic in Singapore, the country I am now working at, was confirmed. Two days after the first case was confirmed in Singapore, eight travellers entering Malaysia, my home country, from Singapore were confirmed to be infected as well.

Since then, we were asked to work from home as travel restriction is applied in both countries. While the situation is not getting better, it’s quite disappointing to know that there are still people believing that COVID-19 is a hoax.

Fortunately, there are still a lot more people working hard in this tough period. Earlier on, my friend who is doing research in Colorado told me that she’s working hard with a group of scientists to educate the public about the virus.

🎨  People endured hours-long queues to enter Singapore from Malaysia before the travel restrictions to curb the spread of COVID-19 came into force. 🎨 

In addition, to aid the researchers and data scientists in an effort to combat the pandemic disease, Google BigQuery also decided to host a repository of public datasets from JHU CSSE (Johns Hopkins Center for Systems Science and Engineering). With the public datasets, we can now query up to 1TB for free each month on COVID-19 datasets and the queries over COVID-19 data are free (until 15th of September 2020).

In my previous article, I talked about how Google BigQuery could work together with Google Data Studio to render beautiful reports without any coding. Thus, in this article, I will show how we can write a simple web client in Golang to fetch data from the BigQuery via its API.

BigQuery Public Datasets Programme

There are a huge number of datasets hosted by Google where we can access and integrate them into our applications but Google pays for the storage. Using the public datasets, we only need to pay for the queries we perform on the data.

🎨  There are a lot of public datasets available in the GCP Marketplace. 🎨 

In order to access the public datasets, we first need to enable them through the Google BigQuery documentation (I find this to be quite funny because Google makes the enabling link to be so hidden). In the “Using the Web UI” page, as shown in the screenshot below, we can then find an URL which will let us open the public datasets project manually through browser (Remember to update the &page=project to your project in GCP).

There are also detailed steps written in the documentation of Data Analytics Products (Yes, the same info is spread all over different places).

🎨  The link to enable the public datasets in the web UI. 🎨 

The COVID-19 Dataset

Once we have done the steps above, we shall see the public datasets, including the COVID-19 datasets, available in our Google BigQuery. The dataset that I will be using in this article is the covid19_jhu_csse, a daily updated data repository for COVID-19 from JHU CSSE.

🎨  The covid19_jhu_csse dataset. 🎨 

There are four tables under the dataset where the first three recording the number of confirmed cases, the number of reported deaths, and the number of recovered cases, respectively, in each of the country or region.

The interesting about the first three tables is that they recorded the numbers of each day in a separated column. Hence, every day, there will be one new column added to three of the tables. I’m not sure why they do so but this actually requires us to write our own client in order to get the data. Google Data Studio cannot work well with dynamic column names.

🎨  A column for each of the day. 🎨 

Luckily, there is a fourth table called summary which actually has just one date column and every record for each day is one row instead of one column. This is a more SQL-friendly table and can be integrated with Google Data Studio easily.

🎨  The summary table is more SQL-friendly because the date is stored in just one column. 🎨 

In this article, I will demonstrate using 1st, 2nd, and 4th table in order to show how we can programmatically get the data through the BigQuery API.

BigQuery Client Library for Golang

There are many client libraries of Google BigQuery for different types of programming languages, including C#. In this article, we choose to use Golang.

Before we proceed, we need to make sure that we have already enabled the BigQuery API for our project in the GCP. From the GCP Cloud Console, we will get the credential which will allow us to connect to the Google BigQuery and thus we must keep this credential file in a safe and secret place.

Now we can proceed to build our Golang client.

Firstly, we need to install the client library using go get command.

go get -u cloud.google.com/go/bigquery

Secondly, we need to initialise a Google BigQuery client.

ctx := context.Background()
client, err := bigquery.NewClient(ctx, projectID)

if err != nil {
    log.Fatalf("bigquery.NewClient: %v", err)
}

defer client.Close()

Querying the Tables

Next, we can start to query the data in the BigQuery.

rows, err := queryData1(ctx, client)
if err != nil {
    log.Fatal(err) 
}

queryResult := processQueryResult1(rows)

If we have other different queries for different tables or even datasets, we can continue to query in the same way as above.

So what does queryData1 look like? It is basically as simple as follows.

func queryData1(ctx context.Context, client *bigquery.Client) (*bigquery.RowIterator, error) { 
    query := client.Query("<SQL here>")
    
    return query.Read(ctx)
}

For example, if we are fetching the date as well as numbers of confirmed cases and deaths, we will be using the the following SQL.

`SELECT 
    CAST(date as STRING) as date, 
    IFNULL(confirmed, 0) as confirmed_cases, 
    IFNULL(deaths, 0) as deaths 
FROM ` + "`bigquery-public-data.covid19_jhu_csse.summary`" + ` ORDER BY date;

There are a few things to take note here is the use of CAST.

It casts the date field to string otherwise we may encounter problems such as having error of “schema field date of type DATE is not assignable to struct field date of type time.Time” when we unmarshal the returned JSON from the BigQuery in Golang later. The reason why I choose CAST is because casting from a date type to a string is independent of time zone and is of the form YYYY-MM-DD.

In addition, we also use IFNULL to make sure that the value in the confirmed_cases and deaths are always non-negative integers. In the original tables, the numbers can be null.

Now, we just need to have a struct where we can apply RowIterator.Next() to load each row into it. The struct that corresponding to the SQL above is as follows.

type QueryResultDataRow struct { 
    Date           string `bigquery:"date"` 
    ConfirmedCases int64  `bigquery:"confirmed_cases"` 
    Deaths         int64  `bigquery:"deaths"`
}

To iterate, we can use the code below.

func processQueryResult1(iter *bigquery.RowIterator) []QueryResultDataRow { 
    var result []QueryResultDataRow

    for { 
        var row QueryResultDataRow

        err := iter.Next(&row)

        if err == iterator.Done { 
            break 
        }

        if err != nil { 
            log.Print(err) 
            continue 
        }

        result = append(result, row) 
    }
    
    return result
}

Here, I’d like to share that there was a mistake I made when I wrote the code above. I forgot that I should end the for loop when the iterator is done, i.e. when err == iterator.Done. So the return statement will never reach. Please take note of this when you are writing this type of iteration.

Challenge: The Tables Having Dates as Columns

If you would like to challenge yourself to retrieve the data from the tables having dates as their columns, it is possible too, just with a few challenges.

First challenge is that we are not sure when the dataset will be updated. So, we can never be sure for the value of the last column. Since the dataset will be updated daily, to be safe, we can let the date of two days ago to be the last column in our query.

Second challenge is the format of the date. We cannot use the Golang magical reference date (Mon, Jan 2 15:04:05 MST 2006) to format the date because of the underscores found in the column name. There is a very interesting discussion about the origin of the magical reference date on Stack Overflow, in case you are interested, but it’s not important here. Hence, we will use the following code to format the date instead.

latestDateInQuery := fmt.Sprintf("_%v_%v_%v", int(d.Month()), d.Day(), d.Year() - 2000)

So the following code will help us to get the count from the second latest, if not the latest, column.

latestDate := time.Now().AddDate(0, 0, -2)
latestDateInQuery := fmt.Sprintf("_%v_%v_%v", int(latestDate.Month()), latestDate.Day(), latestDate.Year()-2000)

Once we get the column name, we can then use it in the following query.

`SELECT 
    IFNULL(province_state, "") AS place, 
    country_region, 
    latitude, 
    longitude, 
    (` + latestDateInQuery + `) AS count 
FROM ` + "`bigquery-public-data.covid19_jhu_csse.confirmed_cases`;"

Visualising the Data

With the queries above, we can then easily generate results with Google Charts. Here, I use the Line Chart and the GeoChart.

🎨  The COVID-19 dashboard powered by Golang and Google BigQuery. 🎨 

There is an interesting feature in GeoChart is that, by default, when we are using latitude and longitude instead of the address to identify the places, the text shown on the map tooltip will be the latitude and longitude, which is not user friendly. However, we can actually change the text by putting a description column right after the longitude column, as discussed over here on Google Groups. It’s interesting because this is said to be an undocumented support for such a column. So we’re not sure where this will stop working.

Next, I am using web page done with Material Design to display the charts. Please enjoy the following screenshots.

🎨  Charts showing the situation in both of my beloved countries. 🎨 
🎨  Top 10 countries having the most confirmed cases. 🎨 
🎨  The global situation where we locate the places with latitudes and longitudes. 🎨 

That’s all for the COVID-19 dashboard done using Golang and Google BigQuery. Also, thanks to JHU CSSE and Google, we are able to access to such an important data for free.

Finally, I’d like to wish all of you and your loved ones to stay safe and healthy.

🎨  A nurse checks the temperature of a visitor as part of the COVID-19 screening procedure. (Photo Credit: The Straits Times) 🎨 

Analytical Processing on Transaction Data with Google BigQuery and Data Studio

Data analysing is not about reporting. While reporting gives data, data analytics gives answers to the whys. Data analytics is the practice of using data and information to make informed decisions.

When I was in a startup, I was assigned a task by the CEO to work on analytical processing on transaction data. In the early days of the startup, the number of transactions was low, so simple data processing using stored procedures on MS SQL databases was sufficient. However, based on my past experience in SMEs, without investing in data workflow early, it will be challenging for the team to use the data to make informed decisions later. Imagine five years down the road, the team requires to do analysis on the huge amount of data collected in the past five years with just Excel.

🎨  Simple solution to do big data processing with Google BigQuery. 🎨 

Hence, in this article, we will be focusing on how we can do analytical data processing with Google BigQuery and then visualise the data using Google Data Studio.

Analytical Data Processing

There are two main categories when we talk about data processing, i.e. Transactional Processing and Analytical Processing.

For example, in my previous startup team, we had an Order Management Support (OMS) team that focused on tracking and processing the orders on time. What the OMS team does is transactional processing. Then we also had another Data Analyse (DA) team to analyse sales data to find out about monthly revenue, for example. So the DA team is basically performing analytical data processing.

Hence, the DA team needs to analyse large batch of data. As the business grows, the data the team needs to access will be going back months, or even years. Also, when there are more sales channels introduced in the business, the DA team may need to access multiple data sources as well. So, let’s see how we can use data warehouse to help dealing with the big data the DA team has.

Why Google BigQuery?

There are many data warehouse solutions out there.

The reason why we choose Google BigQuery is because it is a data warehouse that is very similar to the RDBMS which we have been very familiar with. Another good news is that Google BigQuery now supports the standard SQL which is ANSI:2011 compliant. Hence, the DA team can move to Google BigQuery seamlessly.

In addition, Google BigQuery can handle complex analytical queries which will be essential to the businesses and the data stored in it can easily scale to petabytes as the businesses grow.

The fast real-time access to our data is also another advantage of Google BigQuery. So within a few seconds, the DA team can retrieve the results from processing the huge amount of data.

Finally, Google BigQuery is serverless. So we don’t have to instantiate compute nodes like we do in AWS Redshift.

🎨  First 1TB per month is free for on-demand querying on Google BigQuery. 🎨 

Importing Data to Google BigQuery

The transaction data of the previous month will normally be double checked and verified by the relevant teams monthly. Once it is done, we can then download the transaction report of the month into a CSV file.

The reason why we choose CSV file is because it’s one of the three file types accepted by Google BigQuery. The other two are JSON and AVRO. Yes, AVRO! We talked about it in our previous article about Azure Event Hub.

Here, we will use Google Cloud Storage to store the CSV files because it is one of the accepted data source for Google BigQuery.

🎨  Monthly transaction data is kept in the bucket on Google Cloud Storage. 🎨 

So after the monthly transaction data has been uploaded to the storage, we can then proceed to create a new dataset (a concept which can be treated as database in RDBMS). Then in the dataset, we can start to create new table based on the monthly transaction data.

There are a few ways on how to create the table in the dataset. It seems like merging data from all months into one table is easier for maintenance. However, I decide to go for the way where we have one table for every month. This way actually allows me to delete and upload monthly data whenever I need to.

🎨  Creating a new table based on data stored in the Google Cloud Storage. Take note that Google BigQuery is powerful enough to generate schema for us. 🎨 

After that, we need to make sure to remove the header row(s) in our CSV file, if any, as shown in the following screenshot. If we don’t do this, the header row may be wrongly included into the dataset. The reason why we don’t need header here is also because the schema has been auto-detected by the Google BigQuery (or defined differently by the person who is uploading the data) in the previous step.

🎨  Remember to remove header in CSV during import stage. 🎨 

Sometimes, there might be some data corruption in the CSV file. For example, a column which is expected to contain only number suddenly has a non-numerical value. Then Google BigQuery will complain to us, as shown in the screenshot below..

🎨  The dialog will indicate the row number (29928) and its position of the error. 🎨 

Once the data is imported successfully to the table, we can then preview the data in the table.

This preview function is a very user-friendly feature. Do you still remember about the query price we mentioned earlier? If we explore the data in the table with the “SELECT *” statement, we will be charged and our usage quota may be affected. However, the preview function allows us to get a rough idea about the data in the table for free (and quota not affected)!

🎨  Previewing the data in the table. 🎨 

Views and Queries

Now we have seen both dataset and table, we need to introduce third concept in Google BigQuery called View. The view is actually a virtual table defined by a SQL query. Unlike the table which actually holds the records, the view will display the data in the related tables by executing its view-query.

Just now, I split the monthly transaction data into different tables. Actually I sort of regretting it after doing so because I can’t have an overview of the yearly report. Fortunately, with view, I can come up with a virtual table that holds essential data for the months in a year from all the tables using UNION in the query.

🎨  Combining transaction data of each month in 2018 into one single view. 🎨 

The query is easy to write as long as we are familiar with the standard SQL. For example, we can have a view which will show the driver who has the highest cost of jobs in each month with the query which uses LIMIT and UNION ALL shown in the following screenshot.

🎨  Who is the top driver? =) 🎨 

Visualisation using Data Studio

Dashboard building and reporting are very important in almost all the businesses because they make it easy to translate messages, retain information, and gather insights from the data. In short, that’s a way of data storytelling.

Similar as Power BI, Google Data Studio comes with interactive dashboards and beautiful reports that inspire smarter business decisions. The Data Studio has connectors to Google Cloud Platform (GCP) services, including Google BigQuery, and data stores. So, we will see how we can make use of it to visualise our data.

In the Data Studio, we first need to search for the BigQuery connector first.

🎨  Google BigQuery <> Google Data Studio 🎨 

After that, we need to locate the table or view which will provide the necessary data for the data visualisation, as shown in the following screenshot.

🎨  We can use both table and view as the data source in Data Studio. 🎨 

We then can draw a table with bars to show the driver with highest cost in their jobs for each month, as shown in the image below.

🎨  Table with bars. 🎨 
🎨  ABC 🎨 

However, we notice that the month is actually not ordered properly and it makes us hard to analyse the data. Why is it so? It turns out that the data type of the Month field is actually now recognised as “Text” which is indicated as “ABC” in the right menu.

To correct it, we need to click on the “ABC” beside the “Month” field and change its type to “Date”. The format we will use YYYYMM because that is how the year and month are formatted in the data source.

🎨  Changing the type of the “Month” field to be Date & Time. 🎨 

We will then see the “Month” column in the table will be shown in date format. The funny thing is even though the format we choose is YYYYMM, when the Data Studio displays the months, they will be displayed as, for example, April 2018 instead of 201804.

What we’re now left to do is just sort the table according to the month in ascending order.

🎨  Sorting the table according to month. 🎨 

So, congratulation to Mr Heng Swee Ren for being the only driver having the highest cost for two months!

In the Data Studio, we can also further customise the style of our report, such as changing the colours, to make the report to be more engaging to the readers.

🎨  A simple report for a huge amount of data is done easily without any coding. 🎨 

Conclusion

This is not the end of the journey. It’s actually just the beginning. For example, the line chart shown above actually has a limitation of showing only 10 series, as discussed over here. If there are more than 10 series, some of them will be grouped as “Others” in the chart and the visualisation will no longer make sense.

Anyway, this is my proposal of how we should do analytical data processing with data warehouse tool, such as Google BigQuery. Through this article, I also hope that businesses, especially startups and SMEs, can start to look into building common business reports using Power BI or Google Data Studio which will avoid wasting programmers’ time on coming up in-house dashboard and reports which are not highly customisable.